Entire functions with fine asymptotic estimates for convex functions
نویسندگان
چکیده
منابع مشابه
The Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions
For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$, we definea subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative $mathrm{T}...
متن کاملJENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملApplication of the Norm Estimates for Univalence of Analytic Functions
By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.
متن کاملGlobal and Fine Approximation of Convex Functions
Let U ⊆ R be open and convex. We prove that every (not necessarily Lipschitz or strongly) convex function f : U → R can be approximated by real analytic convex functions, uniformly on all of U . We also show that C-fine approximation of convex functions by smooth (or real analytic) convex functions on R is possible in general if and only if d = 1. Nevertheless, for d ≥ 2 we give a characterizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ufa Mathematical Journal
سال: 2014
ISSN: 2074-1863,2074-1871
DOI: 10.13108/2014-6-2-35